

Arrastres de sedimentos por el escurrimiento aguas abajo.

Labranza a favor de la pendiente

Manifestaciones de la erosión

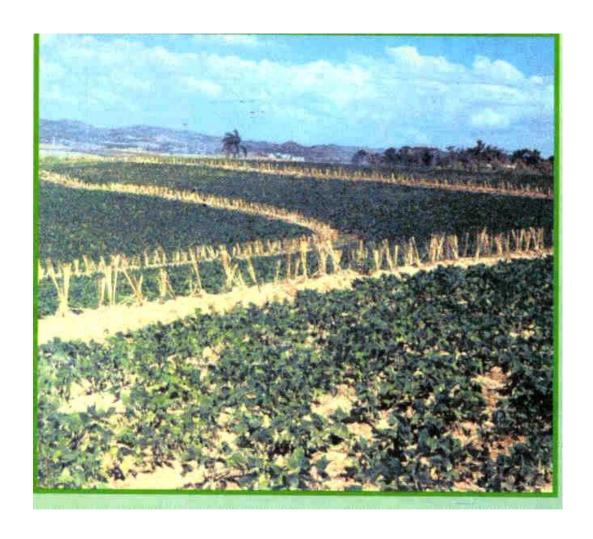
De las diez especies de gramíneas ordinarias y perennes que se encuentran en las regiones tropicales pertenecientes a la familia Andropogoneae, la *Vetiveria zizanoides* ha demostrado ser ideal para la conservación del suelo y la humedad.

No tiene rizomas ni estolones y se propaga mediante divisiones radiculares o haces enraizados. La planta crece en grandes macollas a partir de una masa radicular muy ramificada y "esponjosa" y sus tallos erguidos alcanzan una altura de entre 0,5

y 1,5 metros.

La formación de las barreras vivas de vetiver tienen un carácter permanente debido a la posibilidad de esta planta de resistir la sequía y reverdecer periódicamente como un muro vivo de gran efecto antierosiva. Se le atribuyen otras bondades, como su carácter alelopático y ser una planta no invasora.

Labranza mínima en curvas de nivel siguiendo el trazado de las barreras vivas de vetiver establecidas


Creación y atención de un banco de semillas agámicas para la multiplicación del vetiver

Plantas de vetiver (cepas) listas para extraerles los hijuelos.

Establecimiento de barreras de vetiver en suelos Inceptisoles con pendientes de 12 % en la cuenca del Hanabanilla en el Escambray (provincia de Villaclara)

Vistas de áreas con barreras de vetiver ya establecidas en la cuenca del Río San Juan en La provincia de Pinar del Río.

Vista de un área de formación de terrazas creadas a partir de bordos de desagüe protegidos con vetiver en la cuenca del Río San Juan en la provincia de Pinar del Río

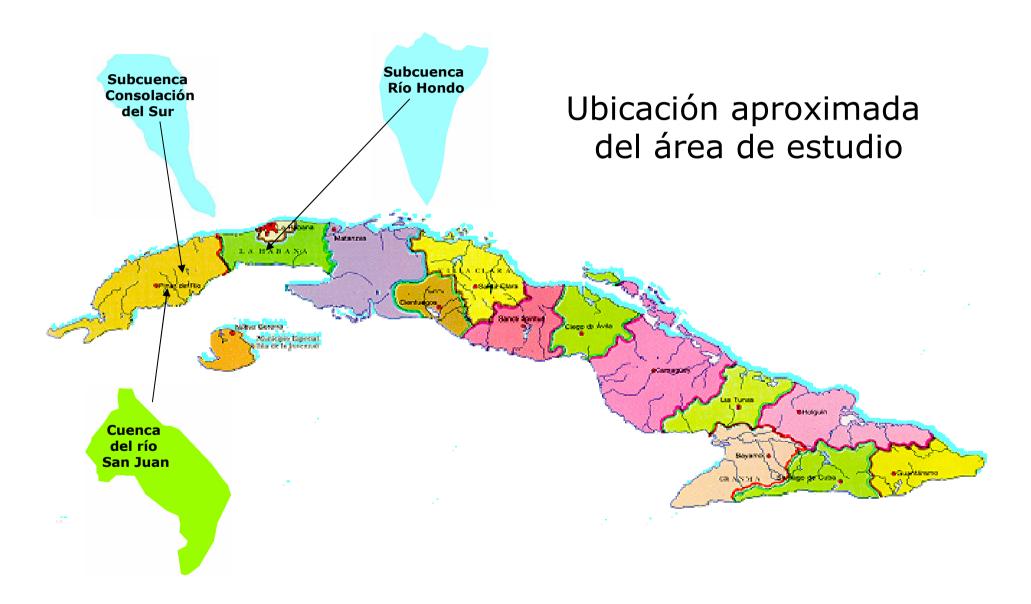
Vista general de las barreras vivas de vetiver implementadas en la subcuenca Consolación del Sur

Barreras vivas de vetiver en plantación de yuca

Barreras vivas de vetiver en sembrados de porotos

Barreras vivas de vetiver en sembrados de tabaco.

Barreras vivas de vetiver en sembrados de maíz

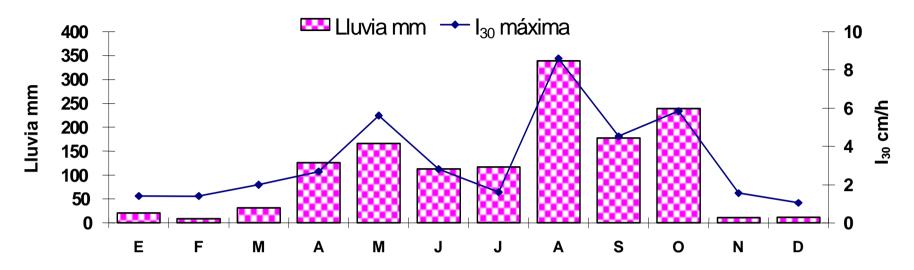


La capacitación de productores y técnicos para implementar las diferentes medidas de conservación.

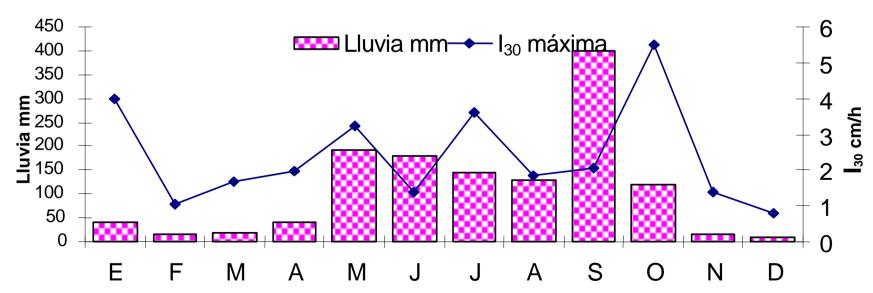
Estudios de casos

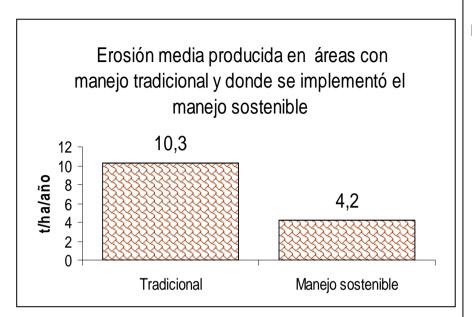
Cuenca del Río San Juan

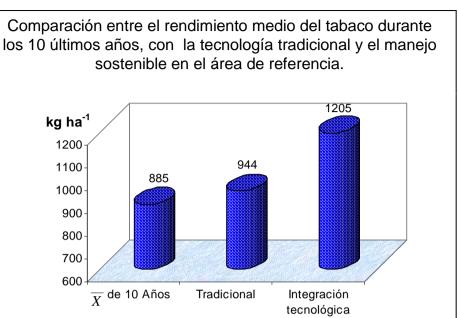
Objetivos planteados en el proyecto:

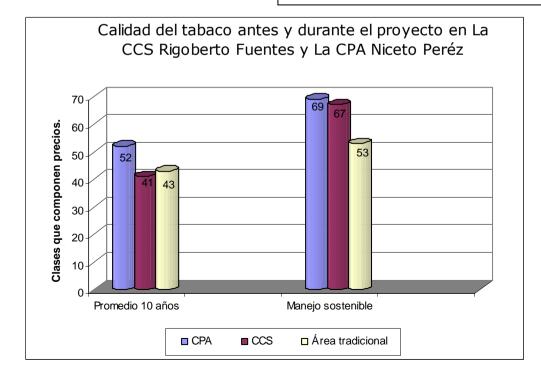

- a) Incrementar el rendimiento y calidad de los cultivos alternantes y/o en rotación con el tabaco.
- b) Reducir en un 25% el uso de los fertilizantes y/o pesticidas de naturaleza química (agroquímicos) que tradicionalmente se aplican.
- c) Lograr la capacitación técnica de los productores en el uso de las nuevas tecnologías propuestas.

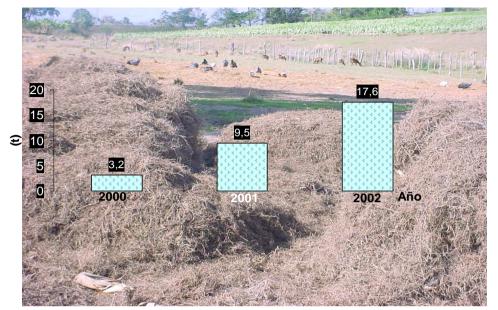
Características del ensayo y medidas implementadas.


Finca	Suelo	Practica establecida
CPA (Cooperativa de producción agropecuaria) Niceto Pérez	Ultisol	-Bordos de desagüe protegidos con barreras vivas de vetiver. -Aportes de materia orgánica., -Corrección de cárcavas. -Labranza mínima en contornos. -Plantas de cobertura en primavera.
CCS (Cooperativa de créditos y servicios) Rigoberto Fuentes	Ultisol	-Establecimiento de barreras vivas de vetiverAportes de materia orgánica, -Corrección de cárcavasLabranza mínima en contornosAbonos verdes de cobertura en primavera.
Tecnología tradicional (10 años)	Ultisol	Labranza convencional sin medidas antierosivas


La pendiente promedio es de 10 %


-Lluvias e intensidad máxima en 30 minutos 1995 - 1999




Lluvias e intensidad máxima en 30 minutos 2000 - 2002

Producción anual de compost en el área de referencia (t)

Producción y aportes de humus de lombriz

Subcuenca Consolación del Sur

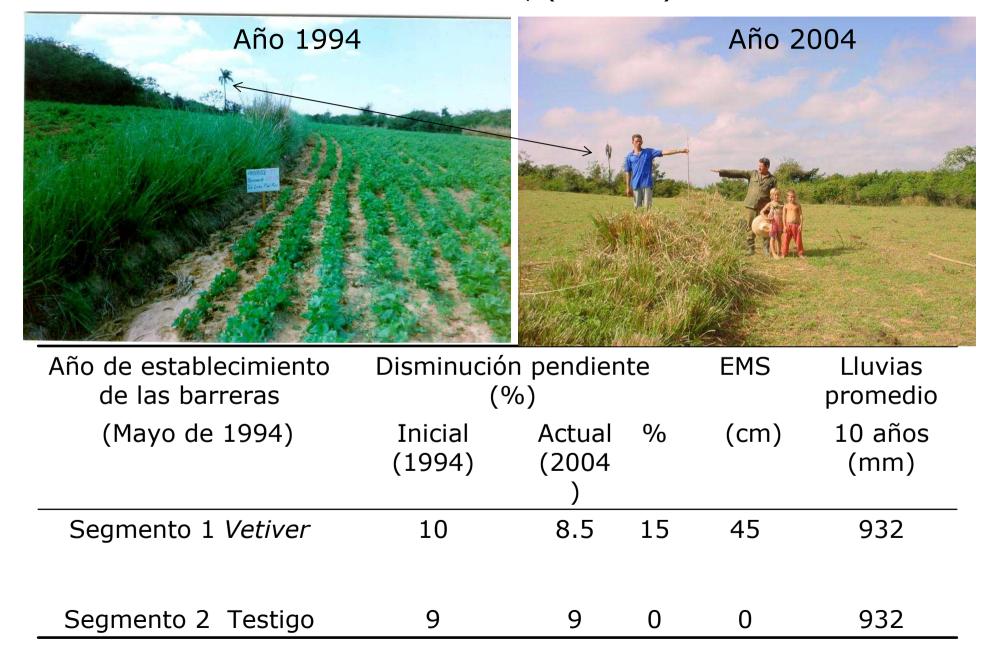
Características del ensayo y medidas implementadas.

Finca	Localidad	ASNM (m)	Suelo	Tipo de instalación
Consolación del Sur.	Comunida d La Leña	50 - 60	(Ultisol)	Segmentos de microcuencas sin instalación, 2 segmentos.

Prácticas agronómicas realizadas:

Localidad	Tratamientos	Pend. (%)	Área (ha)	Práctica	Rotación
La Leña	S/Mc - 1	10	1.5	Bordos protegidos con barreras vivas de Vetiver	Maíz + Mucuna d Fríjol
	S/Mc - 2	9	1.6	Sin medidas	Maíz - Fríjol

Itinerario y rotación de cultivos seguida en cada segmento de microcuenca.



Protección de embalses con barreras vivas de vetiver, los que impiden el asorve de los mismos con los sedimentos movilizados con el escurrimiento aguas abajo.

Espesor máximo de los sedimentos (EMS) en las terrazas de vetiver. La Leña, (10 años).

Modificaciones de algunas propiedades del suelo. La Leña.

Trat.	Suelos	Textura	Prof (cm)	рН	M.O	P ₂ O ₅	P_2O_5 K_2O Mg/100g de	Poros (%)			Compact. (Kg/cm²)
					(%)		elo	PE	Surco	Calle	Surco
				Febr	ero de	2004					
(Barreras	Ultisol	Franco	0-10	4.3	0.9	12	10	15	-	ı	-
vetiver)	vetiver) Arenoso	Arenoso	11-20	4.6	0.6	8	6	7	105	75	2.50
			21-30	4.7	0.4	2	3	5	-	ı	-
				Febr	ero de	1994					
(Barreras	Ultisol	Ultisol Franco	0-10	4.3	0.8	8	5	10	-	ı	-
vetiver) Arenoso	11-20	4.5	0.5	5	4	5	80	60	3.00		
			21-30	4.6	0.4	1	3	_	-	-	

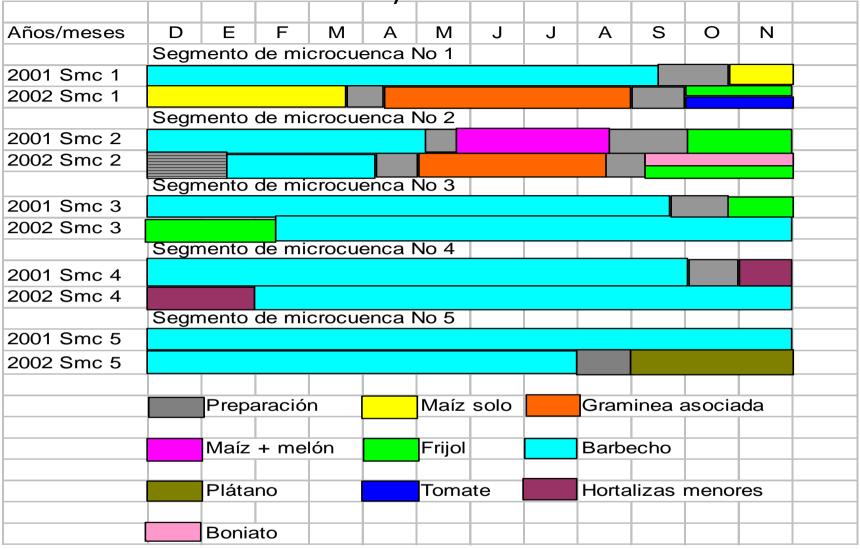
PE (Porosidad estructural), PG (Porosidad global) PT (porosidad textural) (PG - PT = PE) Permeabilidad se realizó con infiltrómetro de laboratorio Compactación medido con Penetrómetro de Bolsillo.

Impacto de las medidas sobre los rendimientos de maíz y fríjol expresados en t/ha de granos.

Tratamientos	Maíz (T 66)	Fríjol (Tomeguín 93)
Maíz + Mucuna deeringianum	1.59	1.35
Testigo	1.86	1.15

Estos rendimientos están en concordancia con la mejora de la fertilidad general del suelo, expresadas en el incremento de la porosidad estructural, la permeabilidad y la humedad residual en la sección receptora, donde se acumulan los sedimentos con una mayor disponibilidad de nutrientes influyendo en el mayor desarrollo de las plantas que ocupan los 2 a 3 metros próximos a las barreras en la sección receptora.

Subcuenca Río Hondo


Características del ensayo y tratamientos ejecutados.

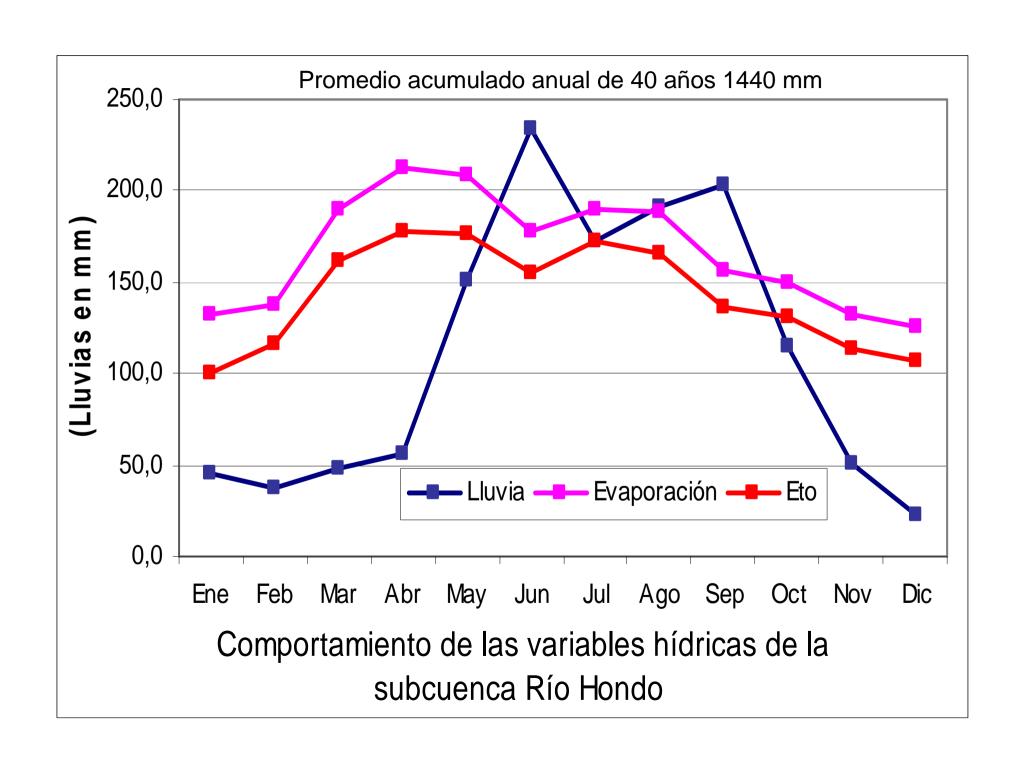
Finca	Localidad	ASNM (m)	Suelo	Tipo de instalación
Finca Integral Loreto de Bejucal.	Comunidad Río Hondo	140 -150	Mollisol Muy Pedregoso (Cambisol)	5 Segmentos de microcuencas sin instalación.

Prácticas agronómicas realizadas:

Localidad	Trat.	Pend. (%)	Área (ha)	Práctica	Rotación
Río Hondo Bejucal	S/Mc - 1	10	1	Bordos protegidos con barreras vivas de <i>Vetiver</i>	Maíz - gramínea + vigna - Frijol (Delicias)
	S/Mc -2	10	1	Barreras de piedras	Frijo- Barbecho – maíz +leguminosa-Frijol (Bat 304)
	S/Mc 3	7	1	Siembra en contornos	Frijol - Barbecho
	S/Mc 4	9	1,5	Barreras de piedras protegidas con <i>Vetiveria zizanoide</i>	habichuela + quimbombó – maíz + Vigna - frijol
	S/Mc 5	11	3	Siembra directa en contornos	Plátano

Itinerarios de actividades y rotación de cultivos efectuadas.

Area del segmento mc 1, 1 ha. la pendiente = 10%. Distancia entre barreras 16 - 20 m. Área del segmento mc 2, 1 ha. la pendiente = 10%. Distancia entre barreras 16 - 20 m. Área del segmento mc 3, 1 ha. la pendiente = 7%. Distancia entre barreras 20 m. Área del segmento mc 4, 1,5 ha. la pendiente = 9%. Distancia entre barreras 18 m. Área del segmento mc 5, 3 ha. la pendiente = 11%. Distancia entre barreras 16 m.


Barreras o muros de piedras protegidos con vetiver en suelos Mollisol con pendientes de 10 % .

Característica del suelo Pardo Mullido Carbonatado (Mollisol).

Segmento de	рН		P_2O_5	K ₂ O	M.O.	CCC	ССВ	V
micro cuenca	H ₂ O	KCI	(mg.100 ^{-1 g. de s.}		(%)	(%) (cmol(+).kg ⁻¹)		(%)
Smc 1	7,1	7,8	1,47	14,0	5,62	47,5	47,5	100
Smc 2	7,1	7,8	2,02	14,5	6,00	48,6	48,6	100
Smc 3	7,0	7,6	1,58	16,2	4,58	49,5	49,5	100
Smc 4	7,0	7,9	1,90	18,0	3,90	50,2	50,2	100
Smc 5	7,1	7,7	2,01	21,2	5,45	48,8	48,8	100
Arrastres	7,2	7,9	1,44	21,5	3,97	46,9	46,9	100

Segmento Textura en % de micro		Dr	Da	Porosidad	Agb	Vel. Inf.		
cuenca	Arena	Limo	Arcilla	(g/cı	m³)	(%)	(%)	(mm/h)
Smc 1	3	46	51	2,75	1,02	63	48	51
Smc 2	6	46	48	2,76	1,00	64	52	47
Smc 3	5	43	52	2,74	0,95	65	45	46
Smc 4	6	48	46	2,73	1,03	62	40	48
Smc 5	4	46	50	2,75	1,06	61	47	45
Arrastres	2	42	56	-	-	-	-	-

Agb = Agregados estables al benceno según la técnica de Henin, (1975)

Pérdidas de suelos estimadas por método directo...

Segmento	Medidas establecidas	Pendiente (%)	Perdidas de suelos (t/ha/año)
Sección	Sin medidas sembrado de maíz a favor de la pendiente.	9	7,6
Smc 4	Barreras de piedras protegidas con <i>Vetiveria zizanoides,</i> preparada y sembrada en contornos con varios cultivos hortícolas y frijol.	10	Sedimentos retenidos y acumulados en los muros de piedras

Impacto de las medidas sobre los rendimientos de maíz y fríjol expresados en kg/ha de granos.

Segmento	Medidas implantadas	Rdto en kg/ha de granos					
S			Maíz		Frijol		
		P.A.	P.M.	P.B.	P.A.	P.M.	P.B.
S/mc 1	Bordos protegidos con vegetación espontánea.	1,654	1,124	525	500	300	105
S/mc 2	Barreras de piedras y siembra en contornos	2,030	1,200	621	560	330	145
S/mc 3	Siembra en contornos	2,420	1,720	956	-	_	-
S/mc 4	Barreras de piedras y Vetiveria z. y maíz + Vigna.	2,252	1,458	875	660	430	206
Sección	Sembrado a favor de la pendiente	580	250	100	-	-	-

P.A. = Parte alta de la ladera presenta apenas erosión.

Sección = Sección existente entre los Smc 3 y Smc 4 sin medidas de control.

P.M. = Parte media de la ladera presenta erosión media.

P.B. = Parte baja de la ladera presenta mayor erosión, no se refiere a la zona de acumulación de sedimentos.

Conclusiones

✓ Con la aplicación práctica del manejo sostenible se mejoró el equilibrio nutrimental del suelo y se disminuyó la degradación por erosión e incrementó su fertilidad.

✓El uso y manejo integrado de suelo, agua, cultivos y sanidad, incrementó el rendimiento y calidad del tabaco de sol ensartado.

✓El balance económico fue positivo, logrando reducir los costos/\$ invertido para el cultivo tabaco en 17 centavos e incrementar la rentabilidad en un 16%.

✓Es posible dirigir los flujos y sinergismos naturales necesarios para sustentar la productividad del sistema con bajos insumos externos.

✓ Aunque la producción de maíz y frijoles no se diferenció mucho entre las medidas implementadas entre sí, se observó, que estos son mayores que en las áreas de referencia (secciones) sin medidas.

✓El sistema en general transcurre progresivamente hacia su estabilidad ecológica.